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Abstract Two chemical function-based pharmacophore
models of selective κ-opioid receptor agonists were
generated by using two different programs: Catalyst/
HypoGen and Phase. The best output hypothesis (Hypo1)
of HypoGen consisted of five features: one hydrogen-bond
acceptor (HA), three hydrophobic points (HY), and one
positive ionizable function (PI). The highest scoring model
(Hypo2) produced by Phase comprised four features: one
acceptor (A), one positive ionizable function (P), and two
aromatic ring features (R). These two models (Hypo1 and
Hypo2) were then validated by test set prediction and
enrichment factors. They were shown to be able to identify
highly potent κ-agonists within a certain range, and
satisfactory enrichments were achieved. The features of
these two pharmacophore models were similar and consis-
tent with experiment data. The models produced here were
also generally in accord with other reported models.
Therefore, our pharmacophore models were considered as
valuable tools for 3D virtual screening, and could be useful
for designing novel κ-agonists.
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Introduction

G-Protein coupled receptors (GPCRs) represent an impor-
tant type of target for drug discovery in the post-genomic
era. GPCRs constitute a superfamily of membrane receptors
of utmost importance in pharmaceutical research [1]. This
superfamily is characterized by a common structural motif
of seven transmembrane-spanning (7TM) helices connected
by intracellular (IL) and extracellular loops (EL) [2, 3].
Opioid receptors belong to the rhodopsin subclass within
this superfamily [4]. It is now widely accepted that there are
at least three opioid receptor subtypes, μ, κ and δ [5].

Opioids are widely used in the treatment of moderate-to-
severe pain. However, the clinical usefulness of opioids
such as morphine, which exert their analgesic effect
through agonism of the μ-opioid receptor, is limited by
significant side effects such as physical dependence,
respiratory depression, constipation, and addiction liabili-
ties. Increasing evidence has accumulated during the past
decade to support the hypothesis that a selective κ-opioid
agonist would be a powerful analgesic agent without the
clinically limiting side effects of selective μ-opioid analge-
sic drugs [6–8]. The most important selective κ-agonists
developed so far are arylacetamide derivatives such as U-
50488 [9] and ICI 199441 [10] (see Fig. 1), which are
centrally acting κ-agonists.

However, these centrally acting κ-agonists produce their
own set of central nervous system (CNS) side effects such
as dysphoria and diuresis [6]. This drawback has provided
impetus for the discovery of peripherally acting κ-agonists.
Much recent work in this area has been carried out by the
Adolor Corporation (http://www.adolor.com/). Based on
ICI 199441, Adolor have developed a number of κ-agonist
analogues in order to avoid the side effects associated with
CNS penetration [11–17].
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Discovering 3D pharmacophores that can explain the
activity of a series of ligands is one of the most
significant contributions of computational chemistry to
drug discovery. In the present study, pharmacophore
models for the κ-agonists mentioned above [11–17] were
generated independently using two commonly used
programs: Catalyst/HypoGen [18, 19] and Phase [20,
21]. These models were expected to provide a rational
hypothetical picture of the primary chemical features
responsible for activity, and thus to supply a useful
knowledge for developing new active candidates targeting
the κ-opioid receptor. Here, we report a comparison of the
performance of these two programs.

Materials and methods

Inhibitory activity data (Ki) spanning over 5 orders of
magnitude (from 0.043 to 2300 nM) for a set of 100 ICI
199441 analogs were collected from the literature (see
Table 1) [11–17]. All activity data were measured using the
same method by the same research group. Catalyst 4.10/
HypoGen and Phase 2.0 were used to generate pharmaco-
phore models from these compounds.

Catalyst

Biological activity data and training set selection

The compounds were divided into two sets: a training set
and a test set. The selection of a suitable training set is
critical for the quality of automatically generated pharma-
cophore models. To ensure the statistical relevance of the
calculated models, the training set should contain a set of
diverse compounds together with their activity values.
These should originate from comparable binding assays
and be spread equally over at least 4–5 orders of
magnitude. Each selected compound should add some
new information to the model while avoiding redundancy
and bias, both in terms of structural features and activity
range. The most active compounds should be included
because they could provide critical information on pharma-
cophore requirements. On the basis of the above criteria, 25
compounds were selected as the training set, including ICI
199441 (compound 91) [10].

To validate our pharmacophore, the other 75 compounds
were used as the test set. For the purpose of estimation
(prediction), all compounds were classified by their activity
as highly active (Ki<10 nM, +++), moderately active
(10 nM ≤Ki ≤ 100 nM, ++), or inactive (Ki >100 nM, +).

All 2D chemical structures were produced with the ISIS/
Draw, version 2.5 drawing program, and the conformational
analysis for each molecule was implemented using the
Poling algorithm and CHARMM force field parameters
within the Catalyst software package. A maximum number
of 250 conformations for each compound were selected
using “best conformer generation” option with a constraint
of 20 kcal/mol energy thresholds above the minimum
conformer searched to ensure an exhaustive characteriza-
tion of conformational space. All other parameters were
kept at their default settings.

Generation of pharmacophore model

The aim of the HypoGen module in Catalyst is to find
hypotheses that are common among the active compounds
of the training set. Pharmacophores that best correlate the
three-dimensional arrangement of features in a given set of
training compounds with the corresponding pharmacolog-
ical activities (IC50 or Ki) are constructed and ranked. An
initial analysis revealed that hydrogen bond acceptor (HA),
hydrophobic group (H), and positive ionizable (PI) features
could effectively map all critical chemical/structural fea-
tures of all the training set molecules. These features were
therefore selected to form the essential information in this
hypotheses generation process.

Hypothesis generation in Catalyst has three consecutive
steps: constructive phase, subtractive phase, and optimiza-
tion phase. In the constructive phase, Catalyst identifies
active compounds. It then identifies inactive compounds in
the subtractive phase. Finally, in the optimization phase,
Catalyst attempts to minimize a cost function consisting of
two terms. One penalizes the deviation between the
estimated activities of the training set molecules and their
experimental values; the other penalizes the complexity of
the hypothesis. The generation process stops when optimi-
zation no longer improves the score.

Assessment of the quality of pharmacophore hypotheses

After the generation of pharmacophore hypotheses, Catalyst
provides two approaches, cost analysis and cross-validation
test, to help assess the quality of the hypotheses.

Cost analysis In addition to generating hypotheses, Cata-
lyst also performs two important theoretical cost calcula-
tions (represented in bit units) that determine the success of
any pharmacophore hypothesis. The first is the cost of an

Fig. 1 Structures of κ-agonists U-50488 and ICI 199441
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Table 1 Structures and binding affinities of compounds in the training set and test set
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Compound X Y n * Ki (nM) pKi 

1*#! Ph CH2 0  0.27 9.569 

2# Ph CH2 1  15 7.824 

3# 

 

CH2 0  29 7.538 

4# 

 

CH2 0  96 7.018 

5 Ph CH2CH2 0  6.0 8.222 

6 Ph NHCH2 0  6.5 8.187 

7# 
 

CH2 0  0.53 9.276 

8*# 
 

CH2CH2 0  23 7.638 

9*# 
 

CH2 0  1.3 8.886 

10*! 
 

CH2CH2 0  280 6.553 

11*! H H   0.17 9.770 

12 4-CF3 H   0.39 9.409 

13! 3,4-Cl H   0.11 9.959 

14# 4-NO2 H   0.21 9.678 

15 4-CN H   0.66 9.180 

16 3-CN H   0.50 9.301 

17# 2-CN H   0.39 9.409 

18 H CH3   0.32 9.495 

19*# H CH3CO   3.8 8.420 

20 4-CN CH3   1 9.000 

21 4-CH3SO2NHCH2 H   16 7.796 

22# 3-CH3SO2NHCH2 H   3.9 8.409 

23*! 2-CH3SO2NHCH2 H   0.78 9.108 

24 4-CH3SO2NH H   5.7 8.244 

25 4-CH3CH2CH2SO2NH H   1.5 8.824 
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26# H H   5.8 8.237 

27 2-CH2NH2 H   10 8.000 

28 3-CH2NH2 H   8.7 8.060 

29*# 4-CH2NH2 H   57 7.244 

30! 2-CH2NHCOCH3 H   1.9 8.721 

31 3-CH2NHCOCH3 H   23 7.638 

32# 4-CH2NHCOCH3 H   47 7.328 

33# 4--CH2NHCONHCH3 H   6.1 8.215 

34 2-CH2NHSO2CH3 H   12 7.921 

35# 3-CH2NHSO2CH3 H   10 8.000 

36 4-CH2NHSO2CH3 H   2.9 8.538 

37#! 4-CH2NHSO2CH3 OH   0.6 9.222 

38 CH2CH3  1  1.3 8.886 

39* CH(CH3)2  1  2.7 8.569 

40 (CH2)2CH3  1  1.3 8.886 

41#! (CH2)3CH3  1  0.8 9.097 

42 Ph  1  5.9 8.229 

43#  1  5.9 8.229 

44#  1  1.7 8.770 

45  1  1.3 8.886 

46 
 

 1  2.8 8.553 

47*#! CH3  0  0.4 9.398 

48# CH3  2  2.8 8.553 

49 CH3  3  1.7 8.770 

50#!     1.9 8.721 

51 H   R 1.6 8.796 

52# H   S 30.5 7.516 

53#! NHSO2(CH2)2CH3   R 1.6 8.796 

54 NHSO2(CH2)2CH3   S 14.2 7.848 
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55# CH2NHSO2CH3   R 4.5 8.347 

56 CH2NHSO2CH3   S 99 7.004 

57*# CH2NHCOOCH3   R 2.6 8.585 

58*#! CH2NHCOOCH3   S 130 6.886 

59*! H   R 0.8 9.097 

60# H   S 2.4 8.620 

61* 5-NHCOOCH3   R 14.7 7.833 

62 5-NHCOOCH3   S 5.8 8.237 

63# 5-NHSO2CH3   R 1.3 8.886 

64# 5-NHSO2CH3   S 1.2 8.921 

65 7- NHSO2CH3   R 3.9 8.409 

66 7- NHSO2CH3   S 1.3 8.886 

67#! 5-

CH2NHSO2(CH2)2CH3 

  R 3.6 8.444 

68! 5-

CH2NHSO2(CH2)2CH3 

  S 3.3 8.481 

69#! H    0.058 10.237 

70*     2.69 8.570 

71# NO2    0.63 9.201 

72! NH2    0.31 9.509 

73# NHSO2CH3    0.36 9.444 

74*# NHSO2NH2    0.48 9.319 

75 NHCO(CH2)2CO2H    9.5 8.022 

76#! N(CH2CO2H)2    2300 5.638 

77# 2-NO2    0.41 9.387 

78# 3-NO2    0.065 10.187 

79 4-NO2    1.1 8.959 

80 2-NO2, 3,4-Cl    0.091 10.041 

81 2-NH2, 3,4-Cl    0.086 10.066 

82 2-NH2    0.58 9.237 

83# 3-NH2    0.93 9.032 
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ideal hypothesis (fixed cost), which represents the simplest
model that fits all data perfectly. The second is the cost of
the null hypothesis (null cost), which represents the highest
cost of a pharmacophore without features and whose
estimated activity is the average of the activity data of the
training set molecules. These calculations represent the
upper and lower bounds for the hypotheses generated.
The greater the difference between these two cost values,
and the closer the total cost of the generated hypothesis is to
the fixed cost, the more statistically significant the
hypothesis is thought to be. According to randomized
studies, a cost difference of 40–60 between the total cost
and the null cost indicates a 75–90% chance of representing
a true correlation in the data.

Cross-validation test To further assess the statistical signif-
icance of the pharmacophore hypotheses, a validation
procedure based on Fischer’s randomization test was
applied [22]. The activity values of the training set

molecules are scrambled randomly using the CatScramble
technique, available in the Catalyst/HypoGen module, and
new spreadsheets are created. The number of spreadsheets
generated depends on the level of statistical significance
one wants to achieve, e.g., 19, 49, or 99 random spread-
sheets have to be generated if you want to achieve
confidence levels of 95%, 98%, or 99%, respectively [23–
26]. In our validation test, we selected the 95% confidence
level, and 19 spreadsheets were created by the CatScramble
command.

Validation of pharmacophores

Activity prediction A performance prediction of the activity
of new compounds is vital for a generated hypothesis.
Therefore, a set of 75 ICI 199441 analogs, which were not
included in the training set, were taken as a test set to be
predicted by the hypothesis. These molecules cover a wide
range of activities from 0.058 to 2,300 nM.

84 4-NH2    0.93 9.032 

85 2-N(SO2CH3)2    8.6 8.066 

86*#! 2-N(SO2CH3)2, 3,4-Cl    0.096 10.018 

87*# 3-N(SO2CH3)2    6.0 8.222 

88# 4-N(SO2CH3)2    25.0 7.602 

89* 2-CF3    0.13 9.886 

90 3-CF3    0.064 10.194 

91*#! 4,5-Cl    0.043 10.398 

92# 4,5-Cl   R 0.34 9.469 

93# 4,5-Cl   S 17 7.770 

94 4-Cl   R 2.0 8.699 

95 4-Cl   S 35 7.456 

96* 4-OCH3   R 22 7.658 

97*! 4-OCH3   S 800 6.097 

98* 4-CF3  0  0.72 9.143 

99*#! 5-SO2NC4H8  0  1900 5.721 

100* 4,5-Cl  1  2.6 8.585 

* Training set molecules that were applied to HypoGen pharmacophore generation
! Compounds that were applied to Phase pharmacophore generation
# Molecules that were included in the construction of 3D-QSAR models in Phase program
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Enrichment factor In lead-discovery studies, the pharma-
cophore model should identify active leads targeting the κ-
opioid receptor in the database screening. An enrichment
factor could indicate the ability of a program to identify
active compounds.

The best hypothesis was used as a query in the screening of
3D conformational molecular structure databases. A refined
SPECS database (http://www.specs.net) of 43,423 molecules,
seeded with 25 known agonists was taken for the database
search to validate whether the pharmacophore model could
identify active compounds or not. The original SPECS
database, totally 196,665 molecules, was refined with some
basic criteria: molecular weight from 250 to 550; ClogP from
0 to 5; rotatable bonds from 3 to 8; hydrogen donors from 1 to
5; hydrogen acceptors from 3 to 7 and LogSw from −5 to 0.

A database search in Catalyst involves two algorithms.
The Fast Flexible Search Database/Spreadsheets command
computes already existing conformers of the database, and
the Best Flexible Search Databases/Spreadsheets is able to
change the conformation of a molecule during computation.
This spiked database (containing 43,448 molecules that
comprised 43,423 molecules from SPECS database and 25
known agonists) was screened with the pharmacophore model
using the “Fast Flexible Search Database/Spreadsheets”
option, and a maximum of 100 conformers per compound
were generated. For both procedures, only those structures
that map all features of the pharmacophore template are
retrieved. The enrichment factor (E) [19] was calculated using
Eq. 1

E ¼ Ha=Ht� A=D ð1Þ
where Ht = the number of hits retrieved, Ha = the number of
active molecules in the hit list, A = the number of active
molecules present in the database, and D = the total number
of molecules in the database. This method not only validates
our pharmacophore models, but could also assess how good
the pharmacophore is in selective retrieval of known
agonists.

Phase

Phase [20, 21]—a highly flexible system for pharmaco-
phore perception, structure alignment, activity prediction,
and 3D database searching—is a more recently developed
pharmacophore modeling package.

Active and inactive sets selection

All 2D chemical structures were again generated with ISIS/
Draw. The Maestro graphical interface was used to build 3D
models of the 100 ICI 199441 analogs. Phase incorporates a
structure-cleaning step utilizing LigPrep [20], which attaches

hydrogens, converts 2D structures to 3D, generates stereo-
isomers, and optionally neutralizes charged structures or
determines the most probable ionization state.

A maximum of 500 conformations were generated for each
molecule using MacroModel torsional sampling with
OPLS_2005 post-processing [20]. Eachminimized conformer
was filtered through a relative energy window of 10 kcal/mol
and a redundancy check of 1 Å in the heavy atom positions.

The set of active compounds should contain as much
structural diversity as possible, so that the resulting
pharmacophore models are applicable across different
chemical families. Because the sketches of the most active
molecules in this study were very similar, the DiverseSo-
lutions module of SYBYL7.0 [27] was used to ensure their
diversity. DiverseSolutions is a package of programs
designed to address a wide variety of tasks associated with
the concept of chemical diversity. All molecules were
assigned to different cells, which represent different
chemical spaces, and the most active molecule of each cell
would be selected as the active set.

Inactive compounds can be used to eliminate hypotheses
that do not provide a good explanation of activity on the
basis of the pharmacophores alone, while only the active set
is used for developing common pharmacophore hypotheses.
The inactive set may be used subsequently to assign
adjusted scores that reflect the degree to which the models
distinguish active from inactive compounds. This is
particularly useful if everything in the active set is built
on a common scaffold, which can give rise to a number of
spurious pharmacophore models that have nothing to do
with ligand binding. In this study, pKi values were used as
the criteria to select the inactive set.

Generation of pharmacophore model

Phase provides six built-in types of pharmacophore
features: hydrogen bond acceptor (A), hydrogen bond
donor (D), hydrophobic group (H), negatively charged
group (N), positively charged group (P), and aromatic ring
(R). The default pharmacophore feature definitions were
used in site generation.

Common pharmacophores are identified using a tree-based
partitioning technique, and they were generated by a system-
atic variation of the number of sites (nsites) and the number of
matching active compounds (nact). With nact = nact_tot initially
(nact_tot is the total number of active compounds), nsites was
varied from seven to three until at least one hypothesis
was found and scored successfully. If this failed, then nact was
decreased by one and the nsites cycle repeated.

Scoring with respect to active compounds was con-
ducted using default parameters for site, vector, and volume
terms. Hypotheses that emerged from this process were
subsequently scored with five inactive compounds, using a
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weight of 1.0. The scoring procedure provides a ranking of
different hypotheses.

Validation of pharmacophores

Activity prediction All hypotheses produced in the last step
were then used to build 3D QSAR (quantitative structure-
activity relationship) models. The activity data of the whole
set was evaluated by generated QSAR models, to assess the
quality of the pharmacophore hypotheses. In these 3D
QSAR models, chemical features of ligand structures are
mapped to a cubic 3D grid. The accuracy of the models
increases with increasing number of PLS (partial least
squares) factors until over-fitting starts to occur.

Phase offers two choices for the structural components
that form the basis of the QSAR model. One is atom-based,
in which all atoms are taken into account, and the other is
pharmacophore-based, in which merely the pharmacophore
sites that can be matched to the hypothesis are considered.
In this study, atom-based QSAR models with 1–3 PLS
factors were employed.

Enrichment factor These pharmacophore hypotheses were
further validated by the database searching approach in Phase,
to retrieve known active compounds from the database
mentioned above. Each molecule was represented by a
maximum of 100 conformations, and the tolerance on
matching the pharmacophore was ±1 Å, applied to each of
the six inter-feature distances. The search process is normally
performed in two steps: finding and fetching. In the finding
step, the database is searched for geometric arrangements of
pharmacophore sites that match the site types and intersite
distances of the chosen hypothesis. In the fetching step,
the match file is used as a lookup table to rapidly retrieve the
relevant conformers from the database and align them to the
hypothesis. The finding step is the center of the search, and is
the most time-consuming part of the process. The enrichment
factor was calculated using the method mentioned above.

Comparison of the two methods

Several programs, such as Catalyst, Phase, DISCO [28],
GASP [29], and Galahad [30], have been developed for the
automatic identification of pharmacophore models. The
main differences between the first two of these programs lie
in the algorithms used for alignment and in the way in
which conformational flexibility is handled.

Algorithms

The HypoGen algorithm tries to find hypotheses that are
common among the active compounds of the training set but

do not reflect inactive compounds. It observes the principle of
Ockham’s razor [31], “plurality should not be posited without
necessity”, thus constructing a model that best correlates with
measured activities and consists of as few features as possible.

In Phase, common pharmacophores are identified using a
tree-based partitioning technique that groups together similar
pharmacophores according to their intersite distances, i.e.,
the distances between pairs of sites in the pharmacophore.

Conformer generation

It should be noted that the number of conformations
generated by Phase is larger than that generated by
Catalyst, which has an upper limit of 255; Phase can
generate at most 1,000 conformers.

In Phase, we can generate conformers for each ligand by
one of two methods: a ligand torsion search, which
involves systematic sampling around rotatable bonds, or a
mixed Monte-Carlo multiple minimization/low-mode
search (MCMM/LMOD). Both methods can be followed
by MacroModel minimization and filtering. In Catalyst,
conformers are generated using the Poling algorithm, which
penalizes any newly generated conformer if it is close to an
already formed conformer in the set.

Furthermore, Phase provides a higher degree of flexibility
and feedback than Catalyst, emphasizing the user as an
integral part of the pharmacophore development process. The
ultimate goal of Phase is to suggest a set of plausible models,
while Catalyst provides only the top 10 hypotheses. In
assessing the quality of generated pharmacophore models,
Catalyst provides more approaches than Phase. In addition to
approaches to activity prediction and enrichment factor that
are similar to those of Phase, Catalyst also has its own specific
methods, namely, cost analysis and cross-validation test.

Results

Catalyst

Pharmacophore generation

A set of ten pharmacophore hypotheses were generated
using the training set listed in Table 1. The results of the
hypotheses, which include different cost values calculated
during hypotheses generation along with root mean squares
(RMS), correlation (r), and pharmacophore features, were
listed in Table 2.

For good hypotheses, the value of the total cost of the
hypothesis is expected to be close to the fixed cost values.
In this study, the total cost of the best hypothesis was
119.581 and the fixed cost of the run was 100.482. The cost
of the null hypothesis for all ten hypotheses was 164.540.
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The difference between the null cost and the total cost was
44.96 bits, which is within the 40–60 bit range, thus
indicating that the top-ranked hypothesis, Hypo1, had a 75–
90% probability of correlating the data.

Hypo1 had the best values in terms of total cost
(119.581) and error cost (99.979), and had the lowest
RMS deviations (1.127) and highest correlation coefficient
(0.900). Therefore, Hypo1 was selected as the best
pharmacophore. This model (Fig. 2) consisted of a spatial
arrangement of five chemical features: one hydrogen-bond
acceptor (HA), three hydrophobic points (HY), and one
positive ionizable function (PI). Table 3 lists the actual and
estimated Ki values of training set compounds calculated on
the basis of Hypo1.

For the 25 molecules in the training set, all the active
compounds were predicted as active (+++), two moder-
ately active compounds were predicted as inactive (+),
and one inactive compound was predicted as moderately
active (++). The difference between the actual and the
estimated activity observed for the three compounds was
only about 1 order of magnitude, which might be an
artifact of the program, which uses a different number of
degrees of freedom for these compounds to mismatch the
algorithm.

The error factor (also listed in Table 3) shows that 24
out of the 25 molecules in the training set have errors
less than 10, which means that the activity prediction of
these compounds falls between 10-fold greater and 1/10
of the actual activity, while the remaining compound has
an error of not higher than 14. The hypothesis can
discriminate closely between stereoisomers (compounds
57, 58 and 96, 97).

In the training set, all highly active compounds map the
features of hydrophobic point (HY2) and positive ionizable
function (PI). All the compounds in the training set map the
PI feature, which reveals that this feature could be largely
responsible for the high molecular bioactivity, and thus
should be taken into account in discovering or designing
novel κ-opioid receptor agonists. The most active com-
pound, compound 91, has a fitness score of 11.59 when
mapped to Hypo1 (Fig. 3a) whereas the most inactive
compound, compound 99, corresponds to a value of 8.46
(Fig. 3b).

The quality of the pharmacophore was further assessed
using the CatScramble technique in Catalyst. This proce-
dure was reiterated 19 times. The results of the randomi-
zation tests are listed in Table 4. None of the outcome
hypotheses has a lower cost score than the initial
hypothesis, which indicates that the original pharmaco-
phore is reliable and that there is a 95% chance that the best
hypothesis represents a true correlation in the training set
activity data.

Pharmacophore validation

Activity prediction The predictive power of Hypo1 was
validated with 75 test set compounds. Of these, 51 of 60
highly active compounds and 4 of 14 moderately active
compounds were predicted correctly. Four highly active
compounds were underestimated as moderately active and
five highly active compounds were underestimated as
inactive; nine moderately active compounds were over-
estimated as false positive and one was underestimated as

Table 2 Results of top ten pharmacophore hypotheses generated
using training set moleculesa by means of Catalyst/HypoGen

Hypothesis Total cost Error cost RMSb Correlation Featuresc

1 119.581 99.979 1.127 0.900 HA,HY,HY,HY,PI

2 120.431 102.774 1.223 0.878 HA,HY,HY,PI,RA

3 129.518 108.112 1.386 0.849 HA,HY,HY,PI

4 131.443 111.582 1.483 0.818 HA,HY,HY,PI

5 135.406 118.971 1.671 0.753 HA,HY,HY,PI,RA

6 136.092 119.670 1.687 0.747 HA,HY,HY,PI,RA

7 137.598 119.699 1.688 0.750 HA,HY,PI,RA

8 137.603 121.041 1.719 0.736 HA,HY,HY,PI,RA

9 137.834 119.819 1.691 0.749 HA,HY,PI,RA

10 138.177 118.074 1.649 0.770 HA,HY,PI,RA

a Null cost=164.540; Fixed cost = 100.482; Configuration cost =15.267.
All cost units are in bits. Configuration cost: a fixed cost which depends
on the complexity of the hypothesis space being optimized
b RMS (root mean square), the deviation of the log (estimated
activities) from the log (measured activities) normalized by the log
(uncertainties)
c HA Hydrogen-bond acceptor, HY hydrophobic feature, RA aromatic
ring feature, PI positive ionizable feature

Fig. 2 The best hypothesis model, Hypo1, produced by the
HypoGen module in the Catalyst4.10 software package. Pharma-
cophore features are color-coded: light-blue hydrophobic groups,
red positive ionizable group, green hydrogen-bond acceptor. All
distances between pharmacophore features are reported in Ång-
stroms. HY1 hydrophobic group 1, HY2 hydrophobic group 2, HY3
hydrophobic group 3, HA hydrogen bond acceptor, PI positive
ionizable group

1036 J Mol Model (2009) 15:1027–1041



inactive; one inactive compound was overestimated as
highly active, since HypoGen is not yet able to deal with
this kind of spatial problem. In summary, most of the
compounds in the test set were predicted correctly accord-
ing to their biological activity.

Enrichment factor Hypo1 was further validated by search-
ing for active molecules from a database targeting κ-opioid
receptors. For this validation experiment, when a spiked
database having 43,448 compounds including 25 known
inhibitors of κ-agonists was screened with Hypo1, 2003
molecules were retrieved as hits. Among these hits, 19
molecules were from the 25 known active compounds.
Thus, the enrichment factor (Eq. 1) was found to be 16.467.

Phase

Pharmacophore generation

According to the diversity analysis using the DiverseSolu-
tions module of SYBYL7.0, 17 active compounds were

identified. An activity threshold of 100 nM Ki values was
applied to retrieve five inactive compounds from the
datasets. In this study, pharmacophores with four features
common to 17 active compounds were identified and
scored according to the superposition of pharmacophore
site points, alignment of vector characteristics, overlap of
molecular volumes, and penalization of matches to inactive
set molecules. The highest scoring pharmacophore model
(Hypo2) contained one hydrogen bond acceptor (A), one
positive ionizable group (P), and two aromatic ring (R)
features, as shown in Fig. 4. The most active molecule was
scored with the highest fitness, 3.0, and it was automati-
cally selected as the reference ligand. The most active and
the most inactive compounds mapped to Hypo2 are
illustrated in Fig. 5.

Pharmacophore validation

Activity prediction The same collection of 100 κ-agonists
was used to define a 47-member training set and a 53-
member test set for the generation and validation of 3D

Table 3 Output of the score hypothesis process on the training set using Catalyst/HypoGen

No. Compound Actual Ki

(nM)
Estimated Ki

(nM)
Error
factora

Fit
valueb

Activity
scalec

Estimated
activity scale

Mapped features

HA HY1 HY2 HY3 PI

1 91 0.043 0.1 2.4 11.59 +++ +++ + + + + +
2 86 0.096 0.11 1.2 11.54 +++ +++ + + + + +
3 89 0.13 0.15 1.2 11.42 +++ +++ + + + + +
4 11 0.17 0.84 4.9 10.68 +++ +++ + + + − +
5 1 0.27 0.47 1.7 10.93 +++ +++ + − + + +
6 47 0.4 2.2 5.5 10.26 +++ +++ + + + − +
7 74 0.48 1.4 3 10.44 +++ +++ + + + − +
8 98 0.72 3.3 4.6 10.08 +++ +++ − + + + +
9 23 0.78 0.63 −1.2 10.80 +++ +++ + + + − +
10 59 0.8 5.8 7.2 9.84 +++ +++ + − + + +
11 9 1.3 0.4 −3.2 10.99 +++ +++ + − + + +
12 57 2.6 2 −1.3 10.30 +++ +++ + + + + +
13 100 2.6 2.5 −1 10.20 +++ +++ + + + − +
14 70 2.7 0.74 −3.7 10.73 +++ +++ + + + − +
15 39 2.7 2.5 −1.1 10.20 +++ +++ + + + − +
16 19 3.8 1.4 −2.8 10.47 +++ +++ + + + − +
17 87 6 6.8 1.1 9.77 +++ +++ + + + − +
18 61 15 24 1.6 9.22 ++ ++ + − + + +
19 96 22 7.7 −2.9 9.71 ++ + − + + + +
20 8 23 210 9.3 8.27 ++ + + − + − +
21 29 57 13 −4.3 9.48 ++ ++ + + + − +
22 58 130 21 −6.1 9.27 + ++ + + − + +
23 10 280 210 −1.3 8.27 + + + − + − +
24 97 800 240 −3.4 8.22 + + − + − + +
25 99 1900 140 −14 8.46 + + + + + − +

a The error factor is computed as the ratio of the measured activity to the activity estimated by the hypothesis or the inverse if estimated is greater
than measured
b Fit value indicates how well the features in the pharmacophore overlap the chemical features in the molecule
c Activity scale: +++ <10 nM (highly active), ++ 10–100 nM (moderately active), + >100 nM (inactive)
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pharmacophore models that rationalized the experimental
activity data. Both the training set and the test set molecules
performed best when characterized by three PLS factors.
The training set achieved R2 of 0.84, with an SD; the test
set obtained Q2 of 0.46, and Pearson-R of 0.692.

Enrichment factors This pharmacophore model was used to
carry out a search of a combined database comprising
43,423 compounds from the SPECS database and 25
known high-affinity κ-agonists. This search recovered 690
hits including 24 of the 25 known active compounds, which
corresponded to an enrichment factor of 60.436.

Discussion

Two pharmacophore models were successfully generated by
Catalyst and Phase. We compared these two pharmacophore
models in terms of their properties, and also compared our
models with other reported pharmacophore models.

Comparison of the two generated models

Pharmacophore features

The best pharmacophore model (Hypo1) produced by
Catalyst/HypoGen consisted of five features: one hydro-
gen-bond acceptor (HA), three hydrophobic groups (HY),
and one positive ionizable function (PI). The highest
scoring model (Hypo2) obtained from Phase comprised
four features: one acceptor (A), one positive ionizable
group (P), and two aromatic ring features (R).

Table 4 Results from cross-validation run using CatScramble

Hypothesis Total cost RMS Correlation(r)

1 148.414 1.890 0.671
2 145.968 1.833 0.698
3 143.763 1.802 0.705
4 156.258 2.059 0.585
5 152.709 2.011 0.614
6 150.853 1.875 0.690
7 143.236 1.764 0.732
8 154.723 1.993 0.624
9 156.563 2.050 0.594
10 144.903 1.836 0.690
11 149.564 1.916 0.662
12 149.702 1.942 0.644
13 148.541 1.983 0.624
14 147.501 1.912 0.668
15 139.380 1.599 0.795
16 155.547 2.142 0.536
17 139.288 1.692 0.760
18 142.562 1.779 0.719
19 140.924 1.656 0.763
Hypo1 119.581 1.127 0.900

Fig. 3 Pharmacophore mapping of the most active (a) and most
inactive (b) compounds on the best hypothesis model Hypo1
generated by Catalyst/HypoGen. Pharmacophore features are color-
coded as in Fig. 2

Fig. 4 The best pharmacophore model Hypo2 produced by Phase.
Pharmacophore features are color-coded: orange aromatic ring, blue
positive ionizable group, red hydrogen-bond acceptor. All distances
between pharmacophore features are reported in Ångstroms. R1
Aromatic ring 1, R2 aromatic ring 2, A hydrogen bond acceptor, P
positive ionizable group
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The two models had two common features, the acceptor
and the positive features. In addition, they also each had
some unique features. Take the most active compound,
compound 91 in the training set, for example. The fitness
value was 11.59 when mapped to Hypo1 (Fig. 3a) and 3.0
when mapped to Hypo2 (Fig. 5a).

In compound 91, the acceptor feature corresponds to
carbonyl oxygen. The amide carbonyl group is a crucial
feature in the class of arylacetamides. In fact, replacement
of the amide linkage with a reversed amide, reduced N-
methyl amide, or ester functional group significantly
decreases or abolishes affinity [32–34]. This is consistent
with the hypothesis that the carbonyl oxygen forms a
hydrogen bond with the receptor. A hydrogen bond is
formed between the hydroxyl of Tyr312 (TMVII) and the
carbonyl oxygen of arylacetamides. Moreover, the role of
the Tyr312 side chain as a hydrogen-bond donor seems to
be confirmed by the reduced affinity of arylacetamides
toward the Tyr312/Ala mutant [35].

In compound 91, the positive feature is attributed to the
ammonium moiety, which, typical of all active opioid
ligands, is believed to form a salt bridge with the Asp138
carboxylate group in TMIII domain of the κ-receptor [24,
36–38].

Hypo1 had another three hydrophobic features (HY1,
HY2 and HY3), while Hypo2 had another two aromatic
ring features (R1 and R2). In compound 91, HY1
corresponds to the benzene ring, which is generally
substituted with two o-chlorine atoms. This position also
maps the R1 of Hypo2. A π-stacking interaction exists
between the Tyr312 side chain and the benzene ring of
arylacetamides [39]. HY2 corresponds to the benzene ring
linked to the chiral carbon (S-configuration), and it also
maps the R2 of Hypo2. HY3 corresponds to chlorine at the
C4 position of the benzene ring. Hydrophobic interactions
were formed between the dichlorophenyl moiety of
arylacetamides and the surrounding side chains of Tyr312,
Leu224, Leu295, and Ala298 [39]. From the discussion
above, we can conclude that the difference in feature
generation between Phase and Catalyst lies simply in their
dissimilar definitions of the hydrophobic point and aromatic
ring features.

Enrichment factor

Hypo1 and Hypo2 were both validated by retrieving active
molecules from spiked databases, and enrichment factors
were calculated. In the 3D database containing 25 high-
affinity κ-agonists, Hypo1 and Hypo2 were able to retrieve
19 and 24 active molecules, respectively, corresponding to
76% and 96%. Results of this query can be interpreted as a
good validation of the generated pharmacophore hypothe-
ses because 76% and 96% of active κ-agonists were
identified as potential candidates. In addition to these
known active molecules, Phase and Catalyst also picked
out 690 and 1,984 new molecules, respectively, of which
221 molecules were in common. These common molecules
may have a higher probability of being κ-agonist candi-
dates. The enrichment factors were 16.467 and 60.436 for
Hypo1 and Hypo2, respectively, indicating that Phase was
three times more likely to pick an active compound from
the database than Catalyst. As Phase retrieved more known
active molecules along with fewer new molecules, this
might indicate that Phase was more precise in its database
search than was Catalyst in our study.

Comparison with other reported models

Recently, a pharmacophore model developed from a novel
automated training set selection protocol, was generated for
classical kappa opioid agonists by Singh et al. [40]. Their
model consisted of four features: a hydrogen bond acceptor

Fig. 5 Pharmacophore mapping of the most active (a) and most
inactive (b) compounds on the best hypothesis model Hypo2
generated by Phase. Pharmacophore features are color-coded as in
Fig. 4
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(HA), a hydrophobic interaction (HY), a ring aromatic (R)
and a positive ionizable moiety (PI). These results were
absolutely in accord with our models.

They also constructed a 3D pharmacophore model of
salvinorin A derivatives using Catalyst software [41]. Their
pharmacophore model consisted of two hydrogen bond
acceptor (HA) and three hydrophobic features (HY). This is
in agreement with our models except for one positive
ionizable group feature. Opioid receptor ligands are known
to require a protonated nitrogen for high affinity binding.
However, salvinorin A is a structurally unique, non-
nitrogenous κ-opioid receptor agonist; it does not agree
with any of the currently accepted pharmacophores of κ-
opioid receptor ligands, or opioid pharmacophores in
general, and demonstrates a new structural class of κ-
opioid receptor agonist.

A summary supported by computer modeling studies was
reported by Filizola et al. [42], describing the chemical,
structural and physicochemical properties of μ, δ and κ
opioid agonists. From 12 selected opioid agonists (morphine,
hydromorphone, nalbuphine, xorphanol, butorphanol, dezo-
cine, etorphine, fentanyl, lofentanyl, carfentanyl, SIOM and
COMP1), four chemical moieties were found to be common
for all compounds: a protonated nitrogen atom, two generic
hydrophobic groups and the centroid of aromatic ring. These
may be regarded as non-specific recognition motifs engaged
in non-specific 3D recognition pharmacophore at μ, δ and κ
opioid receptors. The common proton acceptor moiety was
also identified for κ-opioid agonists. Our pharmacophore
models are in accord with these results.

In addition to the four recognition motifs, Filizola also
showed that κ-agonists possessed an extra unique chemical
center that corresponded to the hydrophobic moiety [42]. The
presence of this key group constituted the unique require-
ment for selective activation of κ-opioid receptor. In our
study, the HY3 feature of Hypo1 seems to validate this, but
unfortunately no corresponding feature was found in Hypo2.

Conclusions

To discover new potent κ-opioid receptor agonists, a
ligand-based computational approach by Catalyst and Phase
programs was employed to identify the molecular structure
requirements of active agonists. In this work, two different
programs, Catalyst/HypoGen and Phase, were performed to
describe the essential pharmacophore of κ-opioid receptor
agonists. One highly predictive pharmacophore model,
which consisted of one hydrogen-bond receptor, three
hydrophobic points, and one positive ionizable feature,
was generated based on 25 training set compounds by the
HypoGen module of Catalyst. Another highly predictive
pharmacophore model, which comprised one hydrogen-

bond receptor, one positive ionizable function, and two
aromatic ring features, was produced by Phase. The
pharmacophore models that we developed using the two
programs were analogous, and coincided well with exper-
imental data as well as with other reported pharmacophore
models. The difference in feature generation between the
two programs lies solely in their dissimilar definition of the
hydrophobic point and aromatic ring features.

In conclusion, our pharmacophore models can be
considered as valuable tools for 3D database searches,
and can also be applied to evaluate how well any newly
designed compound maps on the pharmacophore prior
to further studies including synthesis. Both applications
may help in identifying or designing novel κ-agonist
lead compounds for further biological evaluation and
optimization.
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